ALDGAMYCIN G, A NEW MACROLIDE ANTIBIOTIC

Sir:

During the course of screening for new antimicrobial antibiotics the cultured broth of the microorganism No. 1117 showed a marked antimicrobial activity against Gram-positive bacteria and was found to contain a new macrolide antibiotic, which we named aldgamycin G (1), together with aldgamycin $F(2)^{1,2}$. In this communication, the isolation and characterization of aldgamycin G and F are reported. Strain No. 1117 was isolated from a soil sample collected in Ikeda, Hokkaido, Japan. On the basis of taxonomic studies, it was identified as a strain of *Streptomyces avidinii*.

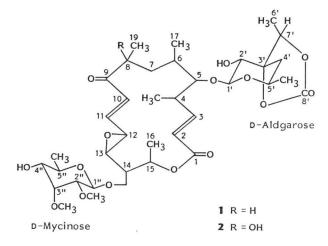
This organism was cultured at 27°C, for 48 hours in a 300-liter fermentation tank containing 150 liters of medium, composed of glycerol 3.0%, corn steep liquor 1.0%, dry yeast 0.3%, NaCl 0.5% and CaCO₃ 0.35% (pH 7.2).

The culture filtrate (150 liters) was applied to a column of Diaion HP-20. The column was washed successively with water, 80% methanol, and then the active material was eluted with

Table 1.	Physico-chemical	properties of	aldgamycin	G (1)) and F (2).
----------	------------------	---------------	------------	-------	-----------	-----

	1	2
Appearance	Colorless crystals	Colorless crystals
MP (°C)	145.5~148.5	
MW (ED-MS) (m/z)	740	756
$[\alpha]_{ m D}^{27}$	-29 (<i>c</i> 1.09, CHCl ₃)	-24.1 (<i>c</i> 1.0, CHCl ₃)
IR (KBr) λ_{\max}	3580, 1800, 1705, 1650, 1630	3450, 1795, 1710, 1630
UV λ_{\max}^{MeOH} nm (ε)	218 (22,500), 241 (12,300)	218 (21,100), 240 (12,400)
Rf CHCl ₃ - MeOH (9:1)*	0.67	0.665
EtOAc	0.71	0.705
Solubility		
Soluble	MeOH, EtOH, CHCl ₃ , EtOAc,	benzene
Insoluble	Hexane, H_2O	

* TLC: Merck 5731.


Table 2. ¹³C NMR chemical shifts for aldgamycin G (1), F (2) and chalcomycin.

Carbon No.	1	2	Chalco- mycin	Carbon No.	1	2	Chalco- mycin
C-1	165.4	165.5	164.7	Aldgarose			Chalcose
C-2	121.0	121.1	120.3	C-1'	101.1	101.1	102.9
C-3	150.7	151.2	151.0	C-2'	71.8	71.6	74.8
C-4	41.6	41.5	41.5	C-3'	84.8	85.0	80.3
C-5	86.7	87.3	87.5	C-4′	41.3	41.2	36.7
C-6	34.0	36.9	36.7	C-5′	67.2	67.0 (b) 67.5 (b)
C-7	32.1	33.9	33.9	C-6′	13.6	13.6	20.8
C-8	44.6	78.4	78.3	C-7′	81.4	81.5	C-3'OCH ₃ 56.8
C-9	200.9	200.2	199.4	C-8′	154.1	154.3	
C-10	125.7	124.9	124.5	C-5'CH ₃	20.5	20.5	
C-11	144.7	147.0	145.8	Mycinose			
C-12	59.1	59.1 (a)	59.4 (a)	C-1"	101.2	101.7	100.5
C-13	59.1	59.7 (a)	58.8 (a)	C-2''	82.1	81.5	81.6
C-14	49.6	49.6	49.4	C-3''	79.8	79.7	79.4
C-15	68.9	68.9 (b)	68.5 (b)	C-4''	72.8	72.8	72.5
C-16	18.4	18.3 (c)	18.3 (c)	C-5″	70.8	70.8	70.4
C-17	16.9	18.9 (c)	18.5 (c)	C-6''	17.8	17.8	17.7
C-19	17.6	27.9	27.7	C-2"OCH ₃	59.7 (a)	58.8	58.5
C-22	19.1	19.2 (c)	19.1 (c)	C-3"OCH ₃	61.7 (a)	61.8	61.4
C-24	67.2	67.0	66.7				

(a) \sim (c): Assignment within any vertical column may be reversed.

THE JOURNAL OF ANTIBIOTICS

Fig. 1. Aldgamycins G (1) and F (2).

Table 3. A	ntimicrobial a	activity of	aldgamycin	G (1),	F (2) and	1 josamycin	(JM)	(MIC, μ	ug/ml).
------------	----------------	-------------	------------	--------	-----------	-------------	------	-------------	---------

Orrections	Compounds				
Organisms	1	2	JM		
Gram-positive bacteria					
Staphylococcus aureus FDA 209P	1.56	1.56	0.2		
S. aureus Smith*	0.39	3.12	0.78		
S. aureus MS 15009**	>100	>100	>100		
S. aureus MS 353	1.56	6.25	1.56		
Streptococcus pyogenes 1099*	1.56	12.5	0.78		
S. pyogenes DP type 2*	100	>100	0.78		
Bacillus subtilis ATCC 6633	1.56	6.25	0.39		
B. cereus IAM 1729	0.1	0.39	0.78		
Micrococcus luteus ATCC 9341	0.2	0.39	0.1		
Gram-negative bacteria					
Escherichia coli NIHJ-JC2	>100	> 100	> 100		
Klebsiella pneumoniae PCI-602	>100	>100	>100		
Salmonella typhimurium IID 971	>100	> 100	>100		
Serratia marcescens IAM 1184	>100	>100	>100		
Pseudomonas aeruginosa NCTC	>100	>100	>100		

* Clinically isolated strains. ** Macrolide resistant strains.

MICs were determined by the agar dilution method using Mueller - Hinton agar (Difco) after incubation at 37°C for 20 hours with an inoculum size of about 10⁸ cfu/ml.

methanol. The dried residue (13 g) was dissolved in a small amount of chloroform and subjected to silica gel column chromatography. After washing with chloroform, the two active fractions were eluted with chloroform - methanol (9:1) and each fraction was concentrated into a small volume *in vacuo*. Then each fraction was passed through a column of Toyoparl HW 40F with methanol. The purified active fractions were collected and concentrated *in vacuo* to give oily solids which were crystallized from chloroform-hexane to give aldgamycin G (1, 77 mg)

and aldgamycin F (2, 43 mg), respectively in pure form. Physico-chemical properties of 1 and 2 are shown in Table 1.

The ¹³C NMR spectra of 1 and 2 are shown in Table 2. Chemical shift assignments for 2 were based on the reported data of chalcomycin³³, and those for 1 were based on the spectra of 2 and COSY and NOESY spectra of 1. As shown in Table 2, chemical shifts of all carbon signals except the C-8 and C-19 signals for 1 were in agreement with those of 2. The C-8 and C-19 carbons of 2 appeared at 78.4 and

Microorganisms	Compounds	Challenge dose (cells/mouse)	ED ₅₀ (mg/mouse)	MIC (µg/ml)
Staphylococcus aureus Smith	1	$2.0 imes 10^{5}$	0.6	0.39
	JM	2.0×10^{5}	1.2	0.78
	EM	2.0×10^{5}	1.0	0.39
Streptococcus pyogenes	1	$8.0 imes 10^{5}$	> 10	1.56
	JM	$8.0 imes 10^{5}$	5.0	0.78
	EM	$8.0 imes 10^{5}$	2.1	0.78
S. pyogenes DP type 2	1	2.6×10^{5}	>10	>100
	JM	2.6×10^{5}	6.0	0.78
	EM	$2.6 imes 10^{5}$	NT	0.39

Table 4. Chemotherapeutic activity of aldgamycin G (1), josamycin (JM) and erythromycin (EM).

Mice (ICR, 4w, 3, 20 \pm 1 g, 6 animals/group) were infected intraperitoneally with three kinds of microorganisms (mentioned in Table 4) in 5% mucin. Compounds suspended in 1% Tween 80 were administered orally immediately post infection. ED₅₀ were determined by the Behrens-Karber method according to the mortality of mice at 7 days after infection.

 LD_{50} of 1: >1,000 mg/kg (ip).

NT: Not tested.

27.9 ppm, respectively, whereas the C-8 and C-19 carbons of **1** appeared at 44.6 and 17.6 ppm, respectively, that is, the C-8 and C-19 carbons of **1** show approximately 35 and 10 ppm upfield shift respectively. This suggested that the OH-group at C-8 of **1** is replaced by hydrogen atom, that is, **1** is a 8-dehydroxy derivative of **2**. This was confirmed by mass spectroscopy, m/z 740 (M⁺), and ¹H NMR spectroscopy in CDCl₃; 2.60 (H-8, m), 1.14 (H-19, d, J=6.6 Hz). Irradiation at 1.14 ppm changed 2.60 ppm signal into a double doublet (J=12.5 and 4.0 Hz). Thus the structure of **1** is shown by Fig. 1.

Table 3 shows the antimicrobial activity of 1 and 2 as determined by the agar dilution method in comparison with josamycin. 1 exhibited antibacterial activity against Gram-positive bacteria, and this activity is higher than that of 2. This result indicates that the 8-OH group of 2 is unfavorable to its antimicrobial activity. Moreover, 1 was as active as, or more active than josamycin against *Staphylococcus aureus* MS 353, *Bacillus cereus* IAM 1729 and *Staphylococcus aureus* Smith.

In vivo antimicrobial activity of 1 is shown in Table 4. 1 showed a good therapeutic effect in mice infected with *S. aureus* Smith, which was the same in extent as josamycin and erythromycin, but less effective in mice infected with other clinically isolated strains.

Acknowledgment

The authors are very grateful to Prof. N. ŎTAKE, University of Tokyo, and associate Prof. K. TATSUTA, Keio University, for their helpful advice.

> Shigeyuki Mizobuchi Junichiro Mochizuki Hiroshi Soga Hiroyuki Tanba Hideo Inoue

Applied Bioscience Laboratory, Kirin Brewery Co., Ltd., 1-2-2 Souja, Maebashi, Gunma 371, Japan

(Received April 21, 1986)

References

- ACHENBACH, H. & W. KARL: Massenspectrometrische Untersuchungs-methoden zur Strukturaufklarung von Makrolid-Antibiotika. Chem. Ber. 108: 772~779, 1975
- ACHENBACH, H. & W. KARL: Untersuchungen an Stoffwechselprodukten von Mikroorganisms, VI. Zur Structur des Antibiotikums Aldgamycin E. Chem. Ber. 108: 759~771, 1975
- 3) ŌMURA, S.; A. NAKAGAWA, A. NESZMELYI, S. D. GERO, A.-M. SEPULCHRE, F. PIRIOU & G. LUKACS: Carbon-13 nuclear magnetic resonance spectral analysis of 16-membered macrolide antibiotics. J. Am. Chem. Soc. 97: 4001, 1975